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1 W 2
2 convergence of unadjusted Langevin

In Part XIII, we gave tools for understanding the convergence of the Langevin dynamics,

dxt = −∇V (xt)dt+
√

2dBt. (1)

For instance, we gave a simple coupling argument showing that when the target stationary distri-
bution π? ∝ exp(−V ) (Theorem 1, Part XIII) is strongly logconcave, then the Langevin dynamics
converge linearly in W 2

2 (Theorem 2, Part XIII). Moreover, using tools from Markov semigroup
theory, we established that when the stationary distribution satisfies weaker functional inequalities
such as Poincaré or log-Sobolev, the Langevin dynamics (1) actually converge under stronger error
metrics such as χ2 or DKL. Unfortunately, these results do not immediately lead to implementable
algorithms, because they only hold in continuous time.

Our goal in this lecture is now to give an introduction to convergence guarantees for discrete-time
approximate implementations of the Langevin dynamics. In this and the following section, we will
specifically focus on the unadjusted Langevin algorithm (ULA), which samples x0 from a starting
distribution π0, and for a step size η > 0, iterates1

x(k+1) ← x(k) − η∇V (x(k)) +
√

2ηξ(k), where ξk ∼ N (0d, Id). (2)

The motivation for considering (2), a forward Euler discretization of the Langevin dynamics, is that
it only requires one query to ∇V , as opposed to running (1) which would require an unbounded
number of queries. This is entirely analogous to the relationship between gradient descent (a
discrete-time algorithm) and its continuous-time counterpart, gradient flow.

It is straightforward to check that the iteration (2) is equivalently induced by the SDE

dxt = −∇V (x0)dt+
√

2dBt (3)

up to time t = η, initialized at x0 ← x(k). In other words, rather than the position-dependent
drift ∇V (xt) typically used in the Langevin dynamics, ULA uses a constant drift ∇V (x0). In this
sense, the (discrete-time) ULA is simply an Euler discretization of the (continuous-time) Langevin
dynamics, just as gradient descent is an Euler discretization of gradient flow (Part II).

Our strategy for analyzing the convergence of (2) under strong logconcavity, when the error met-
ric is W 2

2 , is then fairly straightforward. We first use rapid convergence of the continuous-time
Langevin dynamics as in Theorem 2, Part XIII, and then bound the discretization error through
a coupling argument. We introduce two standard helper claims which help in our analysis.

Lemma 1. Let π? ∝ exp(−V ), where V : Rd → R is L-smooth. Then,

Ex∼π?
[
‖∇V (x)‖22

]
≤ Ld.

Proof. kjtian: This lemma is Homework V, Problem 1. I will update when it is due.
1In this lecture, for consistency with Part XIII, we use superscripts to denote an iteration count for ULA, to

contrast with subscripts which are used to indicate the passage of time.
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Lemma 2. Let {xt}t∈[0,η] follow (1), where V : Rd → R is L-smooth and η ≤ 1
3L . Then,

E
[
‖xη − x0‖22

]
≤ 6η2E

[
‖∇V (x0)‖22

]
+ 12ηd.

Proof. By using ‖a+ b+ c‖22 ≤ 3 ‖a‖22 + 3 ‖b‖22 + 3 ‖c‖22, we have for any t ∈ [0, η],

E
[
‖xt − x0‖22

]
= E

[∥∥∥∥−∫ t

0

∇V (xs)ds+
√

2Bt

∥∥∥∥2

2

]

≤ 3t2E
[
‖∇V (x0)‖22

]
+ 3E

[∥∥∥∥∫ t

0

(∇V (xs)−∇V (x0))ds
∥∥∥∥2

2

]
+ 6E ‖Bt‖22

≤ 3t2E
[
‖∇V (x0)‖22

]
+ 3tE

[∫ t

0

‖∇V (xs)−∇V (x0)‖22 ds
]

+ 6E ‖Bt‖22

≤ 3η2E
[
‖∇V (x0)‖22

]
+ 3ηL2E

[∫ t

0

‖xs − x0‖22 ds
]

+ 6ηd.

(4)

The second-to-last inequality was due to Cauchy-Schwarz, i.e. for {vs}s∈[0,t] ⊂ Rd,∥∥∥∥∫ t

0

vsds
∥∥∥∥2

2

=

∫ t

0

∫ t

0

〈vs, vs′〉 dsds′ ≤
∫ t

0

∫ t

0

(
1

2
‖vs‖22 +

1

2
‖vs′‖22

)
dsds′ = t

∫ t

0

‖vs‖22 ds, (5)

and the last inequality in (4) used our smoothness assumption. Therefore, the conclusion follows
from a variant of Grönwall’s inequality (Fact 1, Part II), which states that if {Φt}t∈[0,η] satisfies
the integral inequality Φt ≤ C1 + C2

∫ t
0

Φsds, then Φη ≤ C1 exp(C2η). We apply this to Φt :=
E[‖xt − x0‖22] and use the assumption on η, yielding the claim:

E
[
‖xη − x0‖22

]
≤ exp

(
3η2L2

) (
3η2E

[
‖∇V (x0)‖22

]
+ 6ηd

)
≤ 6η2E

[
‖∇V (x0)‖22

]
+ 12ηd.

We can now analyze the discretization error of one step of the unadjusted Langevin algorithm.

Lemma 3. Let V : Rd → R be L-smooth and µ-strongly convex. Let x0 ∼ π0, let {xt}t∈[0,η] follow
(3), and let πη denote the law of xη. Then, for η ≤ µ

10L2 ,

W 2
2 (πη, π

?) ≤
(

1− µη

2

)
W 2

2 (π0, π
?) +

32η2L2d

µ
.

Proof. We first introduce some simplifying notation. Let {x̄t}t∈[0,η] follow (1), starting from x̄0 =
x0, and with law π̄t at time t ∈ [0, η]. Then the proof of Theorem 2, Part XIII shows that

W 2
2 (π̄η, π

?) ≤ exp (−2µη)W 2
2 (π0, π

?). (6)

Next, applying Lemma 2 (with η ← t for each t ∈ [0, η]), and using the coupling γη of πη and π̄η
which share a copy of Brownian motion driving the respective SDEs, shows that

W 2
2 (πη, π̄η) ≤ E(xη,x̄η)∼γη

[
‖xη − x̄η‖22

]
= E

[∥∥∥∥∫ η

0

(∇V (xt)−∇V (x0))dt
∥∥∥∥2

2

]

≤ ηL2E

[∫ η

0

‖xt − x0‖22 dt
]
≤ 6η4L2E

[
‖∇V (x0)‖22

]
+ 12η3L2d.

In the second-to-last inequality, we again used (5) and smoothness, and in the last inequality, we
gained a factor of η by using Lemma 2 at each time t ∈ [0, η]. We further have, for the optimal
coupling γ ∈ C(π0, π

?) realizing W 2
2 (π0, π

?),

E
[
‖∇V (x0)‖22

]
≤ 2Ex?∼π?

[
‖∇V (x?)‖22

]
+ 2E(x0,x?)∼γ

[
‖∇V (x0)−∇V (x?)‖22

]
≤ 2Ld+ 2L2E(x0,x?)∼γ

[
‖x0 − x?‖22

]
= 2Ld+ 2L2W 2

2 (π0, π
?),

(7)
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using Lemma 1. Combining the above displays and using ηL ≤ 1
10 implies

W 2
2 (πη, π̄η) ≤ 16η3L2d+ 12η4L4W 2

2 (π0, π
?). (8)

Finally, because any three vectors xη ∼ πη, x̄η ∼ π̄η, x?η ∼ π? satisfy

∥∥xη − x?η∥∥2

2
≤ (1 + µη)

∥∥x̄η − x?η∥∥2

2
+

(
1 +

1

µη

)
‖xη − x̄η‖22 ,

we combine (6) and (8) to obtain the conclusion:

W 2
2 (πη, π

?) ≤ (1 + µη)W 2
2 (π̄η, π

?) +

(
1 +

1

µη

)
W 2

2 (πη, π̄η)

≤ (1 + µη) exp (−2µη)W 2
2 (π0, π

?) +

(
1 +

1

µη

)(
16η3L2d+ 12η4L4W 2

2 (π0, π
?)
)

≤
(

1− µη

2

)
W 2

2 (π0, π
?) +

32η2L2d

µ
.

By iterating upon Lemma 3, we obtain a convergence rate for the unadjusted Langevin algorithm
in the W 2

2 error metric. As we will discuss in Section 3, this analysis can be slightly improved.

Theorem 1 (W 2
2 convergence of unadjusted Langevin). Let V : Rd → R be L-smooth and µ-

strongly convex, and let κ := L
µ , ε ∈ (0, 1). Let x(0) ← argminx∈RdV (x), and consider iterating the

update (2) for 0 ≤ k < K with η = ε2µ
128L2d . Then, if π(K) denotes the law of x(K),

µW 2
2

(
π(K), π?

)
≤ ε2, for K ≥ 256κ2d

ε2
log

(
4d

ε2

)
.

Proof. Let π(k) denote the law of x(k) for all 0 ≤ k ≤ K, and recall that Lemma 5, Part II shows
that W 2

2 (π(0), π?) ≤ 2d
µ . Moreover, applying Lemma 3 with π0 ← π(k) and πη ← π(k+1) shows

W 2
2

(
π(k+1), π?

)
≤
(

1− µη

2

)
W 2

2

(
π(k), π?

)
+

32η2L2d

µ
,

for each 0 ≤ k < K. Recursing upon this guarantee yields

W 2
2

(
π(K), π?

)
≤ exp

(
−µηK

2

)
W 2

2

(
π(0), π?

)
+

32η2L2d

µ
· 2

µη
,

where we summed a geometric sequence, and our choices of η,K give the claim.

We remark that we use the more natural error metric µW 2
2 in Theorem 1 as opposed to W 2

2 , as it
is a scale-invariant quantity in the strong logconcavity parameter µ, and is directly comparable to
DKL(·‖π?) via Talagrand’s transportation inequality, i.e. Lemma 13, Part XIII), which states

µ

2
W 2

2 (π, π?) ≤ DKL (π‖π?) ,

if π? satisfies a log-Sobolev inequality with constant
1

µ
.

(9)

We also showed in Section 5.2, Part XIII that µ-strong logconcavity implies such a log-Sobolev
inequality holds. In the following section, we give an alternative analysis of (2) which shows that
we can directly achieve bounds on DKL(π(K)‖π?), strengthening Theorem 1 as implied by (9).
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2 DKL convergence of unadjusted Langevin
Our goal in this section is to give a discrete-time analog of Lemma 10, Part XIII developed by
[VW19], which shows rapid convergence of DKL(πt‖π?) along the Langevin dynamics when π?

satisfies a log-Sobolev inequality. As in Section 1, the simplest way to measure discretization
error is in the W 2

2 metric, as we have already developed such tools (e.g. Lemma 2). We will use
Talagrand’s transportation inequality (9) to relate these W 2

2 errors back to the function value of
interest, i.e. DKL (·‖π?). We again start by analyzing the change in KL divergence of the law of
an iterate after one step of ULA, which runs the Euler-discretized SDE (3) for time η.

Lemma 4. Let V : Rd → R be L-smooth and suppose π? ∝ exp(−V ) satisfies a log-Sobolev
inequality with constant 1

µ . Let x0 ∼ π0, let {xt}t∈[0,η follow (3), and let πη denote the law of xη.
Then for η ≤ µ

10L2 ,

DKL (πη‖π?) ≤
(

1− µη

2

)
DKL (π0‖π?) + 9η2L2d.

Proof. Throughout this proof, let π0t : Rd × Rd → R≥0 be the density corresponding to the joint
law of (x0, xt), for all t ∈ [0, η]. We also use the notation π0|t(x0 | xt) to mean the conditional
distribution of x0 given xt, and similarly define πt|0(xt | x0), such that

π0t(x0, xt) = π0(x0)πt|0(xt | x0) = πt(xt)π0|t(x0 | xt). (10)

Our first step is to derive a continuity equation (in the sense of Lemma 6, Part XIII) for the SDE
(3). By using the Fokker-Planck equation (Proposition 3, Part XIII), we have that

∂

∂t
πt|0(x | x0) = ∇ ·

(
∇V (x0)πt|0(x | x0)

)
+ ∆πt|0(x | x0).

Therefore, averaging over x0 ∼ π0, we have
∂

∂t
πt(x) =

∫ (
∇ ·
(
∇V (x0)πt|0(x | x0)

)
+ ∆πt|0(x | x0)

)
π0(x0)dx0

=

∫
(∇ · (∇V (x0)π0t(x0, x)) + ∆π0t(x0, x)) dx0

= ∇ ·
(
πt(x)

∫
π0|t(x0 | x)∇V (x0)dx0

)
+ ∆πt(x)

= ∇ ·
(
πt(x)Ex0∼π0|t [∇V (x0) | xt = x]

)
+ ∆πt(x)

= ∇ ·
(
πt(x)∇ log

(
πt(x)

π?(x)

))
+∇ ·

(
πt(x)Ex0∼π0|t [∇V (x0)−∇V (x) | xt = x]

)
.

(11)

Comparing to Eq. (16), Part XIII, we see that the continuity equations differ only by a term that
looks like Ex0∼π0|t [∇V (x0) −∇V (x) | xt = x]. At this point, our proof is very similar to Lemma
10, Part XIII, except we use the tools from Section 1 to bound the discretization error. Concretely,

∂

∂t
DKL (πt‖π?) =

∂

∂t

(∫
πt(x) log

(
πt(x)

π?(x)

)
dx
)

=

∫
log

(
πt(x)

π?(x)

)
∇ ·
(
πt(x)∇ log

(
πt(x)

π?(x)

))
dx

+

∫
log

(
πt(x)

π?(x)

)
∇ ·
(
πt(x)Ex0∼π0|t [∇V (x0)−∇V (x) | xt = x]

)
dx

= −
∫ ∥∥∥∥∇ log

(
πt(x)

π?(x)

)∥∥∥∥2

2

πt(x)dx

−
∫ 〈
∇ log

(
πt(x)

π?(x)

)
,Ex0∼π0|t [∇V (x0)−∇V (x) | xt = x]

〉
πt(x)dx

≤ −1

2

∫ ∥∥∥∥∇ log

(
πt(x)

π?(x)

)∥∥∥∥2

2

πt(x)dx

+
1

2

∫ ∥∥Ex0∼π0|t [∇V (x0)−∇V (x) | xt = x]
∥∥2

2
πt(x)dx

≤ −1

2

∫ ∥∥∥∥∇ log

(
πt(x)

π?(x)

)∥∥∥∥2

2

πt(x)dx+
1

2
E(x0,x)∼π0t

[
‖∇V (x0)−∇V (x)‖22

]
,

(12)

4



where the second line again used ∂
∂t

∫
πt(x)dx = ∂

∂t1 = 0 and substituted (11), the fourth line used
integration by parts, the sixth line used 〈a, b〉 ≤ 1

2 ‖a‖
2
2 + 1

2 ‖b‖
2
2, and the last line used Jensen’s

inequality. Now, by plugging in the log-Sobolev inequality (in the form of Lemma 8, Part XIII)
into (12), as well as our bound from Lemma 2,

∂

∂t
DKL (πt‖π?) ≤ −µDKL (πt‖π?) + 3η2L2E

[
‖∇V (x0)‖22

]
+ 6ηL2d.

Moreover, using the bound (7) with Talagrand’s transportation inequality (9) shows

E
[
‖∇V (x0)‖22

]
≤ 2Ld+ 2L2W 2

2 (π0, π
?) ≤ 2Ld+

4L2

µ
DKL (π0‖π?) .

Combining the above two displays and using our bound on η finally yields

∂

∂t
DKL (πt‖π?) ≤ −µDKL (πt‖π?) + 9ηL2d+

12η2L4

µ
DKL (π0‖π?)

=⇒ ∂

∂t
(exp (µt)DKL (πt‖π?)) ≤ exp (µt)

(
9ηL2d+

12η2L4

µ
DKL (π0‖π?)

)
.

The conclusion then follows from integrating and using our choice of η:

DKL (πη‖π?) ≤ exp (−µη)

(
DKL (π0‖π?) + η exp(µη)

(
9ηL2d+

12η2L4

µ
DKL (π0‖π?)

))
≤
(

1− µη

2

)
DKL (π0‖π?) + 9η2L2d.

At this point, the same recursion as used in Theorem 1 (with slightly different parameters), using
the one-step guarantee in Lemma 4 rather than Lemma 3, yields our desired convergence rate.

Theorem 2 (DKL convergence of unadjusted Langevin). Let V : Rd → R be L-smooth and suppose
π? ∝ exp(−V ) satisfies a log-Sobolev inequality with constant 1

µ , and let κ := L
µ , ε ∈ (0, 1). Let

x(0) ∼ π0, and consider iterating the update (2) for 0 ≤ k < K with η = ε2µ
72L2d . Then, if π(K)

denotes the law of x(K),

DKL

(
π(K)‖π?

)
≤ ε2

2
for K ≥ 144κ2d

ε2
log

(
4DKL

(
π(0)‖π?

)
ε2

)
.

Proof. As in the proof of Theorem 1, applying Lemma 4 for K iterations yields

DKL

(
π(K)‖π?

)
≤ exp

(
−µηK

2

)
DKL

(
π(0)‖π?

)
+ 9η2L2d · 2

µη

≤ exp

(
−µηK

2

)
DKL

(
π(0)‖π?

)
+
ε2

4
≤ ε2

2
.

As discussed at the end of Section 1, the assumptions made in Theorem 2 are actually weaker than
those in Theorem 1, since strong logconcavity implies a log-Sobolev inequality (but not the other
way around). Moreover, Theorem 2 implies Theorem 1 up to constants, via (9). The reason for
the scaling ε2

2 in Theorem 2 is that Pinsker’s inequality then shows DTV(π(K), π?) ≤ ε as well.

3 The frontier
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Source material
Portions of this lecture are based on reference material in [Che24], as well as the author’s own
experience working in the field.
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